Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Sci Rep ; 14(1): 8073, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580653

RESUMO

The fishing cat, Prionailurus viverrinus, faces a population decline, increasing the importance of maintaining healthy zoo populations. Unfortunately, zoo-managed individuals currently face a high prevalence of transitional cell carcinoma (TCC), a form of bladder cancer. To investigate the genetics of inherited diseases among captive fishing cats, we present a chromosome-scale assembly, generate the pedigree of the zoo-managed population, reaffirm the close genetic relationship with the Asian leopard cat (Prionailurus bengalensis), and identify 7.4 million single nucleotide variants (SNVs) and 23,432 structural variants (SVs) from whole genome sequencing (WGS) data of healthy and TCC cats. Only BRCA2 was found to have a high recurrent number of missense mutations in fishing cats diagnosed with TCC when compared to inherited human cancer risk variants. These new fishing cat genomic resources will aid conservation efforts to improve their genetic fitness and enhance the comparative study of feline genomes.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Gatos , Animais , Humanos , Genoma/genética , Neoplasias da Bexiga Urinária/patologia , Carcinoma de Células de Transição/patologia , Genômica , Células Germinativas/patologia
2.
J Immunother Cancer ; 12(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631708

RESUMO

BACKGROUND: Natural killer (NK) cells are cytotoxic cells capable of recognizing heterogeneous cancer targets without prior sensitization, making them promising prospects for use in cellular immunotherapy. Companion dogs develop spontaneous cancers in the context of an intact immune system, representing a valid cancer immunotherapy model. Previously, CD5 depletion of peripheral blood mononuclear cells (PBMCs) was used in dogs to isolate a CD5dim-expressing NK subset prior to co-culture with an irradiated feeder line, but this can limit the yield of the final NK product. This study aimed to assess NK activation, expansion, and preliminary clinical activity in first-in-dog clinical trials using a novel system with unmanipulated PBMCs to generate our NK cell product. METHODS: Starting populations of CD5-depleted cells and PBMCs from healthy beagle donors were co-cultured for 14 days, phenotype, cytotoxicity, and cytokine secretion were measured, and samples were sequenced using the 3'-Tag-RNA-Seq protocol. Co-cultured human PBMCs and NK-isolated cells were also sequenced for comparative analysis. In addition, two first-in-dog clinical trials were performed in dogs with melanoma and osteosarcoma using autologous and allogeneic NK cells, respectively, to establish safety and proof-of-concept of this manufacturing approach. RESULTS: Calculated cell counts, viability, killing, and cytokine secretion were equivalent or higher in expanded NK cells from canine PBMCs versus CD5-depleted cells, and immune phenotyping confirmed a CD3-NKp46+ product from PBMC-expanded cells at day 14. Transcriptomic analysis of expanded cell populations confirmed upregulation of NK activation genes and related pathways, and human NK cells using well-characterized NK markers closely mirrored canine gene expression patterns. Autologous and allogeneic PBMC-derived NK cells were successfully expanded for use in first-in-dog clinical trials, resulting in no serious adverse events and preliminary efficacy data. RNA sequencing of PBMCs from dogs receiving allogeneic NK transfer showed patient-unique gene signatures with NK gene expression trends in response to treatment. CONCLUSIONS: Overall, the use of unmanipulated PBMCs appears safe and potentially effective for canine NK immunotherapy with equivalent to superior results to CD5 depletion in NK expansion, activation, and cytotoxicity. Our preclinical and clinical data support further evaluation of this technique as a novel platform for optimizing NK immunotherapy in dogs.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Cães , Animais , Humanos , Imunoterapia Adotiva , Leucócitos Mononucleares , Citotoxicidade Imunológica , Células Matadoras Naturais , Osteossarcoma/veterinária , Neoplasias Ósseas/metabolismo , Citocinas/metabolismo
3.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542325

RESUMO

The cancer stem cell (CSC) hypothesis postulates that heterogeneous human cancers harbor a population of stem-like cells which are resistant to cytotoxic therapies, thus providing a reservoir of relapse following conventional therapies like chemotherapy and radiation (RT). CSCs have been observed in multiple human cancers, and their presence has been correlated with worse clinical outcomes. Here, we sought to evaluate the impact of drug dosing of the multi-tyrosine kinase inhibitor, sorafenib, on CSC and non-CSCs in soft tissue sarcoma (STS) models, hypothesizing differential effects of sorafenib based on dose and target cell population. In vitro, human cancer cell lines and primary STS from surgical specimens were exposed to escalating doses of sorafenib to determine cell viability and expression of CSC marker aldehyde dehydrogenase (ALDH). In vivo, ALDHbright CSCs were isolated, exposed to sorafenib, and xenograft growth and survival analyses were performed. We observed that sarcoma CSCs appear to paradoxically respond to the tyrosine kinase inhibitor sorafenib at low doses with increased proliferation and stem-like function of CSCs, whereas anti-viability effects dominated at higher doses. Importantly, STS patients receiving neoadjuvant sorafenib and RT on a clinical trial (NCT00864032) showed increased CSCs post therapy, and higher ALDH scores post therapy were associated with worse metastasis-free survival. These data suggest that low-dose sorafenib may promote the CSC phenotype in STS with clinically significant effects, including increased tumor growth and higher rates of metastasis formation in sarcoma patients.


Assuntos
Sarcoma , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Sorafenibe/metabolismo , Aldeído Desidrogenase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/metabolismo , Sarcoma/patologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
4.
Front Immunol ; 15: 1345499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469293

RESUMO

Immune responses to both SARS-CoV-2 infection and its associated vaccines have been highly variable within the general population. The increasing evidence of long-lasting symptoms after resolution of infection, called post-acute sequelae of COVID-19 (PASC) or "Long COVID," suggests that immune-mediated mechanisms are at play. Closely related endemic common human coronaviruses (hCoV) can induce pre-existing and potentially cross-reactive immunity, which can then affect primary SARS-CoV-2 infection, as well as vaccination responses. The influence of pre-existing immunity from these hCoVs, as well as responses generated from original CoV2 strains or vaccines on the development of new high-affinity responses to CoV2 antigenic viral variants, needs to be better understood given the need for continuous vaccine adaptation and application in the population. Due in part to thymic involution, normal aging is associated with reduced naïve T cell compartments and impaired primary antigen responsiveness, resulting in a reliance on the pre-existing cross-reactive memory cell pool which may be of lower affinity, restricted in diversity, or of shorter duration. These effects can also be mediated by the presence of down-regulatory anti-idiotype responses which also increase in aging. Given the tremendous heterogeneity of clinical data, utilization of preclinical models offers the greatest ability to assess immune responses under a controlled setting. These models should now involve prior antigen/viral exposure combined with incorporation of modifying factors such as age on immune responses and effects. This will also allow for mechanistic dissection and understanding of the different immune pathways involved in both SARS-CoV-2 pathogen and potential vaccine responses over time and how pre-existing memory responses, including potential anti-idiotype responses, can affect efficacy as well as potential off-target effects in different tissues as well as modeling PASC.


Assuntos
COVID-19 , Vacinas , Humanos , Síndrome Pós-COVID-19 Aguda , SARS-CoV-2 , Envelhecimento , Idiótipos de Imunoglobulinas
5.
Curr Biol ; 34(7): 1506-1518.e7, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38531359

RESUMO

The Bengal cat breed was developed from intercrosses between the Asian leopard cat, Prionailurus bengalensis, and the domestic cat, Felis catus, with a last common ancestor approximately 6 million years ago. Predicted to derive ∼94% of their genome from domestic cats, regions of the leopard cat genome are thought to account for the unique pelage traits and ornate color patterns of the Bengal breed, which are similar to those of ocelots and jaguars. We explore ancestry distribution and selection signatures in the Bengal breed by using reduced representation and whole-genome sequencing from 947 cats. The mean proportion of leopard cat DNA in the Bengal breed is 3.48%, lower than predicted from breed history, and is broadly distributed, covering 93% of the Bengal genome. Overall, leopard cat introgressions do not show strong signatures of selection across the Bengal breed. However, two popular color traits in Bengal cats, charcoal and pheomelanin intensity, are explained by selection of leopard cat genes whose expression is reduced in a domestic cat background, consistent with genetic incompatibility resulting from hybridization. We characterize several selective sweeps in the Bengal genome that harbor candidate genes for pelage and color pattern and that are associated with domestic, rather than leopard, cat haplotypes. We identify the molecular and phenotypic basis of one selective sweep as reduced expression of the Fgfr2 gene, which underlies glitter, a trait desired by breeders that affects hair texture and light reflectivity.


Assuntos
Panthera , Gatos/genética , Animais , Haplótipos , Fenótipo
7.
J Hered ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416051

RESUMO

Previous studies of canid population and evolutionary genetics have relied on high-quality domestic dog reference genomes that have been produced primarily for biomedical and trait mapping studies in dog breeds. However, the absence of highly contiguous genomes from other Canis species like the gray wolf and coyote, that represent additional distinct demographic histories, may bias inferences regarding inter-specific genetic diversity and phylogenetic relationships. Here, we present single haplotype de novo genome assemblies for the gray wolf and coyote, generated by applying the trio-binning approach to long sequence reads generated from the genome of a female first-generation hybrid produced from a gray wolf and coyote mating. The assemblies were highly contiguous, with contig N50 sizes of 44.6 Mb and 42.0 Mb for the wolf and coyote, respectively. Genome scaffolding and alignments between the two Canis assemblies and published dog reference genomes showed near complete collinearity, with one exception: a coyote-specific chromosome fission of chromosome 13 and fusion of the proximal portion of that chromosome with chromosome 8, retaining the Canis-typical haploid chromosome number of 2n=78. We evaluated mapping quality for previous RAD-seq data from 334 canids and found nearly identical mapping quality and patterns among canid species and regional populations regardless of the genome used for alignment (dog, coyote, or gray wolf). These novel wolf and coyote genome reference assemblies will be important resources for proper and accurate inference of Canis demography, taxonomic evaluation, and conservation genetics.

8.
Front Vet Sci ; 11: 1336158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379924

RESUMO

The field of cancer immunology has seen a meteoric rise in interest and application due to the discovery of immunotherapies that target immune cells, often leading to dramatic anti-tumor effects. However, successful cellular immunotherapy for solid tumors remains a challenge, and the application of immunotherapy to dogs with naturally occurring cancers has emerged as a high yield large animal model to bridge the bench-to-bedside challenges of immunotherapies, including those based on natural killer (NK) cells. Here, we review recent developments in the characterization and understanding of canine NK cells, a critical springboard for future translational NK immunotherapy research. The characterization of canine NK cells is exceptionally pertinent given the ongoing challenges in defining them and contextualizing their similarities and differences compared to human and murine NK cells compounded by the limited availability of validated canine specific reagents. Additionally, we summarize the current landscape of the clinical and translational literature employing strategies to capitalize on endogenous and exogenous NK cell immunotherapy in canine cancer patients. The insights regarding efficacy and immune correlates from these trials provide a solid foundation to design and test novel combinational therapies to enhance NK cell activity with the added benefit of motivating comparative work to translate these findings to human cancers with extensive similarities to their canine counterparts. The compilation of knowledge from basic canine NK phenotype and function to applications in first-in-dog clinical trials will support the canine cancer model and enhance translational work to improve cancer outcomes for both dogs and humans.

9.
Proc Natl Acad Sci U S A ; 121(2): e2310763120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165928

RESUMO

Habitat degradation and loss of genetic diversity are common threats faced by almost all of today's wild cats. Big cats, such as tigers and lions, are of great concern and have received considerable conservation attention through policies and international actions. However, knowledge of and conservation actions for small wild cats are lagging considerably behind. The black-footed cat, Felis nigripes, one of the smallest felid species, is experiencing increasing threats with a rapid reduction in population size. However, there is a lack of genetic information to assist in developing effective conservation actions. A de novo assembly of a high-quality chromosome-level reference genome of the black-footed cat was made, and comparative genomics and population genomics analyses were carried out. These analyses revealed that the most significant genetic changes in the evolution of the black-footed cat are the rapid evolution of sensory and metabolic-related genes, reflecting genetic adaptations to its characteristic nocturnal hunting and a high metabolic rate. Genomes of the black-footed cat exhibit a high level of inbreeding, especially for signals of recent inbreeding events, which suggest that they may have experienced severe genetic isolation caused by habitat fragmentation. More importantly, inbreeding associated with two deleterious mutated genes may exacerbate the risk of amyloidosis, the dominant disease that causes mortality of about 70% of captive individuals. Our research provides comprehensive documentation of the evolutionary history of the black-footed cat and suggests that there is an urgent need to investigate genomic variations of small felids worldwide to support effective conservation actions.


Assuntos
Felidae , Felis , Leões , Humanos , Animais , Felidae/genética , Genoma , Genômica
10.
NPJ Regen Med ; 9(1): 6, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245543

RESUMO

Mesenchymal stem cells (MSCs) are novel therapeutics for the treatment of Crohn's disease. However, their mechanism of action is unclear, especially in disease-relevant chronic models of inflammation. Thus, we used SAMP-1/YitFc (SAMP), a chronic and spontaneous murine model of small intestinal inflammation, to study the therapeutic effects and mechanism of action of human bone marrow-derived MSCs (hMSC). hMSC dose-dependently inhibited naïve T lymphocyte proliferation via prostaglandin E2 (PGE2) secretion and reprogrammed macrophages to an anti-inflammatory phenotype. We found that the hMSCs promoted mucosal healing and immunologic response early after administration in SAMP when live hMSCs are present (until day 9) and resulted in a complete response characterized by mucosal, histological, immunologic, and radiological healing by day 28 when no live hMSCs are present. hMSCs mediate their effect via modulation of T cells and macrophages in the mesentery and mesenteric lymph nodes (mLN). Sc-RNAseq confirmed the anti-inflammatory phenotype of macrophages and identified macrophage efferocytosis of apoptotic hMSCs as a mechanism that explains their long-term efficacy. Taken together, our findings show that hMSCs result in healing and tissue regeneration in a chronic model of small intestinal inflammation and despite being short-lived, exert long-term effects via sustained anti-inflammatory programming of macrophages via efferocytosis.

11.
Cell Genom ; 4(2): 100482, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38237599

RESUMO

The emergence of COVID-19 and severe acute respiratory syndrome (SARS) has prioritized understanding bats' viral tolerance. Myotis bats are exceptionally species rich and have evolved viral tolerance. They also exhibit swarming, a cryptic behavior where large, multi-species assemblages gather for mating, which has been hypothesized to promote interspecific hybridization. To resolve the coevolution of genome architecture and their unusual antiviral tolerance, we undertook a phylogenomic analysis of 60 Old World Myotis genomes. We demonstrate an extensive history of introgressive hybridization that has replaced the species phylogeny across 17%-93% of the genome except for pericentromeric regions of macrochromosomes. Introgression tracts were enriched on microchromosome regions containing key antiviral pathway genes overexpressed during viral challenge experiments. Together, these results suggest that the unusual Myotis karyotype may have evolved to selectively position immune-related genes in high recombining genomic regions prone to introgression of divergent alleles, including a diversity of interleukin loci responsible for the release of pro-inflammatory cytokines.


Assuntos
Quirópteros , Animais , Quirópteros/genética , Genoma , Genômica , Cariótipo , Antivirais
13.
Nat Genet ; 55(11): 1953-1963, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37919451

RESUMO

The role of structurally dynamic genomic regions in speciation is poorly understood due to challenges inherent in diploid genome assembly. Here we reconstructed the evolutionary dynamics of structural variation in five cat species by phasing the genomes of three interspecies F1 hybrids to generate near-gapless single-haplotype assemblies. We discerned that cat genomes have a paucity of segmental duplications relative to great apes, explaining their remarkable karyotypic stability. X chromosomes were hotspots of structural variation, including enrichment with inversions in a large recombination desert with characteristics of a supergene. The X-linked macrosatellite DXZ4 evolves more rapidly than 99.5% of the genome clarifying its role in felid hybrid incompatibility. Resolved sensory gene repertoires revealed functional copy number changes associated with ecomorphological adaptations, sociality and domestication. This study highlights the value of gapless genomes to reveal structural mechanisms underpinning karyotypic evolution, reproductive isolation and ecological niche adaptation.


Assuntos
Evolução Molecular , Genômica , Haplótipos/genética , Genoma/genética , Dosagem de Genes
14.
Mil Med ; 188(Suppl 6): 176-184, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37948248

RESUMO

INTRODUCTION: Although existing auditory injury prevention standards benefit warfighters, the Department of Defense could do more to understand and address auditory injuries (e.g., hearing loss, tinnitus, and central processing deficits) among service members. The Blast Injury Prevention Standards Recommendation (BIPSR) Process is designed to address the needs of all the Military Services for biomedically valid Military Health System (MHS) Blast Injury Prevention Standards. MATERIALS AND METHODS: Through the BIPSR Process, stakeholders provided their intended uses and requested functionalities for an MHS Blast Injury Prevention Standard. The BIPSR Process established a broad-based, non-advocacy panel of auditory injury Subject Matter Expert (SME) Panel with members drawn from industry, academia, and government. The SME Panel selected evaluation factors, weighted priorities, and then evaluated the resulting candidate MHS Auditory Blast Injury Prevention Standards against the evaluation criteria. The SME Panel members provided rationales for their decisions, documented discussions, and used iterative rounds of feedback to promote consensus building among members. The BIPSR Process used multi-attribute utility theory to combine members' evaluations and compare the candidate standards. RESULTS: The SME Panel identified and collated information about existing auditory injury datasets to identify gaps and promote data sharing and comprehensive evaluations of standards for preventing auditory blast injury. The panel evaluated the candidate standards and developed recommendations for an MHS Blast Injury Prevention Standard. CONCLUSIONS: The BIPSR Process illuminated important characteristics, capabilities, and limitations of candidate standards and existing datasets (e.g., limited human exposure data to evaluate the validity of injury prediction) for auditory blast injury prevention. The evaluation resulted in the recommendation to use the 8-hour Equivalent Level (LAeq8hr) as the interim MHS Auditory Blast Injury Prevention Standard while the community performs additional research to fill critical knowledge gaps.


Assuntos
Traumatismos por Explosões , Perda Auditiva , Serviços de Saúde Militar , Militares , Zumbido , Humanos , Traumatismos por Explosões/prevenção & controle , Explosões , Zumbido/prevenção & controle
15.
Immunohorizons ; 7(11): 760-770, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971282

RESUMO

NK cells are a key focus in immuno-oncology, based on their ability to eliminate malignant cells without prior sensitization. Dogs are valuable models for translational immunotherapy studies, especially for NK cells, where critical species differences exist between mice and humans. Given that the mechanism for recognition of "self" by canine NK cells is currently unknown, we sought to evaluate expression of Ly49 in canine NK cells using in silico and high-throughput techniques. We interrogated the identified polymorphism/mutation in canine Ly49 and assessed the potential impact on structure using computational modeling of three-dimensional protein structure and protein-protein docking of canine Ly49 with MHC class I (MHC-I). Bulk and single-cell RNA-sequencing analysis was performed to detect gene expression of Ly49/KLRA1 in resting and activated NK cells. Tertiary protein structure demonstrated significant structural similarity to the known murine system. Molecular docking of canine Ly49 with MHC-I was favorable, converging at a single low-energy conformation. RNA sequencing revealed expression of Ly49/KLRA1 in both resting and activated NK cells and demonstrated almost exclusive expression of the gene in the NK cluster at the single-cell level. Despite prior reports of a mutated, nonfunctional canine Ly49, our data support that the protein product is predicted to bind to MHC-I in a comparable conformation to the murine system and is expressed in canine NK cells with upregulation following activation. Taken together, these data suggest that Ly49 is capable of recognizing MHC-I and therefore regulating NK cell function in dogs.


Assuntos
Antígenos de Histocompatibilidade Classe I , Neoplasias , Animais , Camundongos , Cães , Humanos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Subfamília A de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Simulação de Acoplamento Molecular , Células Matadoras Naturais , Neoplasias/genética
16.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37987559

RESUMO

Even in the genomics era, the phylogeny of Neotropical small felids comprised in the genus Leopardus remains contentious. We used whole-genome resequencing data to construct a time-calibrated consensus phylogeny of this group, quantify phylogenomic discordance, test for interspecies introgression, and assess patterns of genetic diversity and demographic history. We infer that the Leopardus radiation started in the Early Pliocene as an initial speciation burst, followed by another in its subgenus Oncifelis during the Early Pleistocene. Our findings challenge the long-held notion that ocelot (Leopardus pardalis) and margay (L. wiedii) are sister species and instead indicate that margay is most closely related to the enigmatic Andean cat (L. jacobita), whose whole-genome data are reported here for the first time. In addition, we found that the newly sampled Andean tiger cat (L. tigrinus pardinoides) population from Colombia associates closely with Central American tiger cats (L. tigrinus oncilla). Genealogical discordance was largely attributable to incomplete lineage sorting, yet was augmented by strong gene flow between ocelot and the ancestral branch of Oncifelis, as well as between Geoffroy's cat (L. geoffroyi) and southern tiger cat (L. guttulus). Contrasting demographic trajectories have led to disparate levels of current genomic diversity, with a nearly tenfold difference in heterozygosity between Andean cat and ocelot, spanning the entire range of variability found in extant felids. Our analyses improved our understanding of the speciation history and diversity patterns in this felid radiation, and highlight the benefits to phylogenomic inference of embracing the many heterogeneous signals scattered across the genome.


Assuntos
Felidae , Tigres , Animais , Filogenia , Felidae/genética , Evolução Biológica , Fluxo Gênico
17.
Curr Biol ; 33(21): 4751-4760.e14, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37935117

RESUMO

Domestic cats were derived from the Near Eastern wildcat (Felis lybica), after which they dispersed with people into Europe. As they did so, it is possible that they interbred with the indigenous population of European wildcats (Felis silvestris). Gene flow between incoming domestic animals and closely related indigenous wild species has been previously demonstrated in other taxa, including pigs, sheep, goats, bees, chickens, and cattle. In the case of cats, a lack of nuclear, genome-wide data, particularly from Near Eastern wildcats, has made it difficult to either detect or quantify this possibility. To address these issues, we generated 75 ancient mitochondrial genomes, 14 ancient nuclear genomes, and 31 modern nuclear genomes from European and Near Eastern wildcats. Our results demonstrate that despite cohabitating for at least 2,000 years on the European mainland and in Britain, most modern domestic cats possessed less than 10% of their ancestry from European wildcats, and ancient European wildcats possessed little to no ancestry from domestic cats. The antiquity and strength of this reproductive isolation between introduced domestic cats and local wildcats was likely the result of behavioral and ecological differences. Intriguingly, this long-lasting reproductive isolation is currently being eroded in parts of the species' distribution as a result of anthropogenic activities.


Assuntos
Felis , Hibridização Genética , Humanos , Gatos/genética , Animais , Bovinos , Abelhas , Ovinos , Suínos , Galinhas , Felis/genética , Europa (Continente) , Fluxo Gênico
18.
Curr Biol ; 33(21): 4761-4769.e5, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37935118

RESUMO

The European wildcat population in Scotland is considered critically endangered as a result of hybridization with introduced domestic cats,1,2 though the time frame over which this gene flow has taken place is unknown. Here, using genome data from modern, museum, and ancient samples, we reconstructed the trajectory and dated the decline of the local wildcat population from viable to severely hybridized. We demonstrate that although domestic cats have been present in Britain for over 2,000 years,3 the onset of hybridization was only within the last 70 years. Our analyses reveal that the domestic ancestry present in modern wildcats is markedly over-represented in many parts of the genome, including the major histocompatibility complex (MHC). We hypothesize that introgression provides wildcats with protection against diseases harbored and introduced by domestic cats, and that this selection contributes to maladaptive genetic swamping through linkage drag. Using the case of the Scottish wildcat, we demonstrate the importance of local ancestry estimates to both understand the impacts of hybridization in wild populations and support conservation efforts to mitigate the consequences of anthropogenic and environmental change.


Assuntos
Fluxo Gênico , Hibridização Genética , Animais , Gatos , Escócia
19.
Sci Adv ; 9(40): eadh9143, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801506

RESUMO

Clouded leopards (Neofelis spp.), a morphologically and ecologically distinct lineage of big cats, are severely threatened by habitat loss and fragmentation, targeted hunting, and other human activities. The long-held poor understanding of their genetics and evolution has undermined the effectiveness of conservation actions. Here, we report a comprehensive investigation of the whole genomes, population genetics, and adaptive evolution of Neofelis. Our results indicate the genus Neofelis arose during the Pleistocene, coinciding with glacial-induced climate changes to the distributions of savannas and rainforests, and signatures of natural selection associated with genes functioning in tooth, pigmentation, and tail development, associated with clouded leopards' unique adaptations. Our study highlights high-altitude adaptation as the main factor driving nontaxonomic population differentiation in Neofelis nebulosa. Population declines and inbreeding have led to reduced genetic diversity and the accumulation of deleterious variation that likely affect reproduction of clouded leopards, highlighting the urgent need for effective conservation efforts.


Assuntos
Genética Populacional , Genômica , Humanos
20.
Semin Hear ; 44(4): 485-502, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37818145

RESUMO

The National Institute for Occupational Safety and Health (NIOSH) evaluated continuous and impact noise exposures and hearing loss among workers at a hammer forge company. Full-shift personal noise exposure measurements were collected on forge workers across 15 different job titles; impact noise characteristics and one-third octave band noise levels were assessed at the forge hammers; and 4,750 historic audiometric test records for 483 workers were evaluated for hearing loss trends. Nearly all workers' noise exposures exceeded regulatory and/or recommended exposure limits. Workers working in jobs at or near the hammers had full-shift time-weighted average noise exposures above 100 decibels, A-weighted. Impact noise at the hammers reached up to 148 decibels. Analysis of audiometric test records showed that 82% of workers had experienced a significant threshold shift, as defined by NIOSH, and 63% had experienced a standard threshold shift, as defined by the Occupational Safety and Health Administration (OSHA). All workers with an OSHA standard threshold shift had a preceding NIOSH significant threshold shift which occurred, on average, about 7 years prior. This evaluation highlights forge workers' exposures to high levels of noise, including impact noise, and how their hearing worsened with age and length of employment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...